Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Deep sequencing on a genome-wide scale reveals diverse stage-specific microRNAs in cambium during dormancy-release induced by chilling in poplar.

Identifieur interne : 002301 ( Main/Exploration ); précédent : 002300; suivant : 002302

Deep sequencing on a genome-wide scale reveals diverse stage-specific microRNAs in cambium during dormancy-release induced by chilling in poplar.

Auteurs : Qi Ding ; Jun Zeng ; Xin-Qiang He

Source :

RBID : pubmed:25269469

Descripteurs français

English descriptors

Abstract

BACKGROUND

Trees in temperate zones show periodicity by alternating active and dormant states to adapt to environmental conditions. Although phytohormones and transcriptional regulation were found to be involved in growth cessation and dormancy transition, little is known about the mechanisms of the dormancy-active growth transition, especially dormancy maintenance and release. Small RNAs are a group of short non-coding RNAs regulating gene expressions at the post-transcriptional level during plant development and the responses to environmental stress. No report on the expression profiling of small RNAs in the cambial meristem during the dormancy-active growth transition has been reported to date.

RESULTS

Three small RNA libraries from the cambium of poplar, representing endodormancy induced by short day conditions, ecodormancy induced by chilling and active growth induced by long day conditions, respectively, were generated and sequenced by Illumina high-throughput sequencing technology. This yielded 123 known microRNAs (miRNAs) with significant expression changes, which included developmental-, phytohormone- and stress-related miRNAs. Interestingly, miR156 and miR172 showed opposite expression patterns in the cambial dormancy-active growth transition. Additionally, miR160, which is involved in the auxin signaling pathway, was expressed specifically during endodormancy release by chilling. Furthermore, 275 novel miRNAs expressed in the cambial zone were identified, and 34 of them had high detection frequencies and unique expression patterns. Finally, the target genes of these novel miRNAs were predicted and some were validated experimentally by 5'RACE.

CONCLUSIONS

Our results provided a comprehensive analysis of small RNAs in the cambial meristem during dormancy-release at the genome-wide level and novel evidence of miRNAs involved in the regulation of this biological process.


DOI: 10.1186/s12870-014-0267-6
PubMed: 25269469
PubMed Central: PMC4189724


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Deep sequencing on a genome-wide scale reveals diverse stage-specific microRNAs in cambium during dormancy-release induced by chilling in poplar.</title>
<author>
<name sortKey="Ding, Qi" sort="Ding, Qi" uniqKey="Ding Q" first="Qi" last="Ding">Qi Ding</name>
</author>
<author>
<name sortKey="Zeng, Jun" sort="Zeng, Jun" uniqKey="Zeng J" first="Jun" last="Zeng">Jun Zeng</name>
</author>
<author>
<name sortKey="He, Xin Qiang" sort="He, Xin Qiang" uniqKey="He X" first="Xin-Qiang" last="He">Xin-Qiang He</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25269469</idno>
<idno type="pmid">25269469</idno>
<idno type="doi">10.1186/s12870-014-0267-6</idno>
<idno type="pmc">PMC4189724</idno>
<idno type="wicri:Area/Main/Corpus">001F84</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001F84</idno>
<idno type="wicri:Area/Main/Curation">001F84</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001F84</idno>
<idno type="wicri:Area/Main/Exploration">001F84</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Deep sequencing on a genome-wide scale reveals diverse stage-specific microRNAs in cambium during dormancy-release induced by chilling in poplar.</title>
<author>
<name sortKey="Ding, Qi" sort="Ding, Qi" uniqKey="Ding Q" first="Qi" last="Ding">Qi Ding</name>
</author>
<author>
<name sortKey="Zeng, Jun" sort="Zeng, Jun" uniqKey="Zeng J" first="Jun" last="Zeng">Jun Zeng</name>
</author>
<author>
<name sortKey="He, Xin Qiang" sort="He, Xin Qiang" uniqKey="He X" first="Xin-Qiang" last="He">Xin-Qiang He</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cambium (genetics)</term>
<term>Cambium (metabolism)</term>
<term>Cold Temperature (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>MicroRNAs (genetics)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basse température (MeSH)</term>
<term>Cambium (génétique)</term>
<term>Cambium (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Séquençage nucléotidique à haut débit (MeSH)</term>
<term>microARN (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>MicroRNAs</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cambium</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cambium</term>
<term>Populus</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cambium</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cambium</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cold Temperature</term>
<term>Gene Expression Regulation, Plant</term>
<term>High-Throughput Nucleotide Sequencing</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Basse température</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Séquençage nucléotidique à haut débit</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Trees in temperate zones show periodicity by alternating active and dormant states to adapt to environmental conditions. Although phytohormones and transcriptional regulation were found to be involved in growth cessation and dormancy transition, little is known about the mechanisms of the dormancy-active growth transition, especially dormancy maintenance and release. Small RNAs are a group of short non-coding RNAs regulating gene expressions at the post-transcriptional level during plant development and the responses to environmental stress. No report on the expression profiling of small RNAs in the cambial meristem during the dormancy-active growth transition has been reported to date.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Three small RNA libraries from the cambium of poplar, representing endodormancy induced by short day conditions, ecodormancy induced by chilling and active growth induced by long day conditions, respectively, were generated and sequenced by Illumina high-throughput sequencing technology. This yielded 123 known microRNAs (miRNAs) with significant expression changes, which included developmental-, phytohormone- and stress-related miRNAs. Interestingly, miR156 and miR172 showed opposite expression patterns in the cambial dormancy-active growth transition. Additionally, miR160, which is involved in the auxin signaling pathway, was expressed specifically during endodormancy release by chilling. Furthermore, 275 novel miRNAs expressed in the cambial zone were identified, and 34 of them had high detection frequencies and unique expression patterns. Finally, the target genes of these novel miRNAs were predicted and some were validated experimentally by 5'RACE.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Our results provided a comprehensive analysis of small RNAs in the cambial meristem during dormancy-release at the genome-wide level and novel evidence of miRNAs involved in the regulation of this biological process.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25269469</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2014</Year>
<Month>Oct</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Deep sequencing on a genome-wide scale reveals diverse stage-specific microRNAs in cambium during dormancy-release induced by chilling in poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>267</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-014-0267-6</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Trees in temperate zones show periodicity by alternating active and dormant states to adapt to environmental conditions. Although phytohormones and transcriptional regulation were found to be involved in growth cessation and dormancy transition, little is known about the mechanisms of the dormancy-active growth transition, especially dormancy maintenance and release. Small RNAs are a group of short non-coding RNAs regulating gene expressions at the post-transcriptional level during plant development and the responses to environmental stress. No report on the expression profiling of small RNAs in the cambial meristem during the dormancy-active growth transition has been reported to date.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Three small RNA libraries from the cambium of poplar, representing endodormancy induced by short day conditions, ecodormancy induced by chilling and active growth induced by long day conditions, respectively, were generated and sequenced by Illumina high-throughput sequencing technology. This yielded 123 known microRNAs (miRNAs) with significant expression changes, which included developmental-, phytohormone- and stress-related miRNAs. Interestingly, miR156 and miR172 showed opposite expression patterns in the cambial dormancy-active growth transition. Additionally, miR160, which is involved in the auxin signaling pathway, was expressed specifically during endodormancy release by chilling. Furthermore, 275 novel miRNAs expressed in the cambial zone were identified, and 34 of them had high detection frequencies and unique expression patterns. Finally, the target genes of these novel miRNAs were predicted and some were validated experimentally by 5'RACE.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Our results provided a comprehensive analysis of small RNAs in the cambial meristem during dormancy-release at the genome-wide level and novel evidence of miRNAs involved in the regulation of this biological process.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Qi</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>Xin-Qiang</ForeName>
<Initials>XQ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>01</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D058506" MajorTopicYN="N">Cambium</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="Y">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="Y">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>05</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>09</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25269469</ArticleId>
<ArticleId IdType="pii">s12870-014-0267-6</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-014-0267-6</ArticleId>
<ArticleId IdType="pmc">PMC4189724</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS Biol. 2008 Sep 23;6(9):e230</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18816164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 1;25(15):1966-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19497933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Sep 16;431(7006):364-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15372044</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2012 Jun;12(2):327-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22415631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Feb 22;108(8):3418-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21289280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 May;82(1-2):113-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23483290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1972 Dec;50(6):750-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16658257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:620</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20021695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 19;312(5776):1040-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(2):e17458</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21386988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):131-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Aug;19(3):309-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10476078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Apr;20(4):843-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18424614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Mar;155(3):1214-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 28;102(26):9412-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15958531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Dec;5(12):1005-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19034268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013;14:233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23570526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Growth Regul. 1999 Dec;18(4):167-170</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10688705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Jun;108(2):615-621</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(11):e48445</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23133634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2005 Apr;8(4):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15809034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jan;23(1):130-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21282527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Aug 21;138(4):750-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2000 Nov;16(11):953-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11159306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10848-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23754401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Oct;1809(10):567-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21777708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2010 Apr;137(8):1243-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20223762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 May;38(4):603-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15125767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Apr;39(4):544-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18166134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 1999 Nov 15;215(2):407-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10545247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Jul 9;12(13):1138-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12121623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Aug 21;138(4):738-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2007 Mar;134(5):813-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17251271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 May;16(5):258-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21466971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2204-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16006581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Mar 4;428(6978):84-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14999285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 May 11;96(10):5844-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(3):469-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):65-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18346190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Jan;25(1):109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15519992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(6):R96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17543110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2013 Apr;81(6):525-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23430564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2370-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17693531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D141-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21062808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Feb;7(2):e1002012</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21383862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Nov;18(11):2929-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Apr;14(2):142-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21420348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2014 Mar 31;24(7):717-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24656832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Aug;20(8):2238-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jul;62(11):3765-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21511902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2008 Sep;135(18):3013-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18701544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D154-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17991681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Dec;39(12):1517-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18026103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Apr 22;121(2):207-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15851028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Oct;115(2):577-585</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Oct;40(2):173-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15447645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Oct;52(1):133-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17672844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jun;17(6):1658-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15849273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 May;235(5):873-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22101925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12):3186-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2004 Sep;131(17):4311-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15294871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2011;12(6):R53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21679406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 May;17(5):1360-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15829600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(3):e33034</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22442676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Aug;14(8):1885-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(15-16):4047-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1997 Oct;7(10):986-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9331369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Apr 7;22(1):129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16600876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3406-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2012 Jan 13;417(2):892-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22209794</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Ding, Qi" sort="Ding, Qi" uniqKey="Ding Q" first="Qi" last="Ding">Qi Ding</name>
<name sortKey="He, Xin Qiang" sort="He, Xin Qiang" uniqKey="He X" first="Xin-Qiang" last="He">Xin-Qiang He</name>
<name sortKey="Zeng, Jun" sort="Zeng, Jun" uniqKey="Zeng J" first="Jun" last="Zeng">Jun Zeng</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002301 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002301 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25269469
   |texte=   Deep sequencing on a genome-wide scale reveals diverse stage-specific microRNAs in cambium during dormancy-release induced by chilling in poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25269469" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020